Skip to main content

Complete Tables of QR Code Character Limits

Extra Qr-Codes Programming
Ryan Gibson
Author
Ryan Gibson
Quantitative Analyst | Computer Scientist
Table of Contents

This is an extra post to accompany “Tips on Creating the Smallest Possible QR Codes” and just contains complete tables of standard QR code data capacities in the numeric, alphanumeric, and binary/byte input modes.

  • The binary/byte input mode is the most general and can encode arbitrary data.
  • The alphanumeric input mode can only encode 0–9, (uppercase) A–Z, space, and $%*+-./:.
  • The numeric input mode can only encode the digits 0-9.

Here are the total character limits, with more details available in the following sections.

Encoding PreferenceBinary/ByteAlphanumericNumeric
Optimizing for size first295342967089
At least M (medium), ~15% error correction233133915596
At least Q (quartile), ~25% error correction166324203993
Always H (high), ~30% error correction127318523057

Optimizing for size first
#

Note that when preferring small sizes, only low error correction is optimal beyond version 5. At that point, it is always better to drop down to a smaller version if you had a higher error correction level.

Version-Error CorrectionBinary/ByteAlphanumericNumeric
1-H1 - 71 - 101 - 17
1-Q8 - 1111 - 1618 - 27
1-M12 - 1417 - 2028 - 34
1-L15 - 1721 - 2535 - 41
2-Q18 - 2026 - 2942 - 48
2-M21 - 2630 - 3849 - 63
2-L27 - 3239 - 4764 - 77
3-M33 - 4248 - 6178 - 101
3-L43 - 5362 - 77102 - 127
4-M54 - 6278 - 90128 - 149
4-L63 - 7891 - 114150 - 187
5-M79 - 84115 - 122188 - 202
5-L85 - 106123 - 154203 - 255
6-L107 - 134155 - 195256 - 322
7-L135 - 154196 - 224323 - 370
8-L155 - 192225 - 279371 - 461
9-L193 - 230280 - 335462 - 552
10-L231 - 271336 - 395553 - 652
11-L272 - 321396 - 468653 - 772
12-L322 - 367469 - 535773 - 883
13-L368 - 425536 - 619884 - 1022
14-L426 - 458620 - 6671023 - 1101
15-L459 - 520668 - 7581102 - 1250
16-L521 - 586759 - 8541251 - 1408
17-L587 - 644855 - 9381409 - 1548
18-L645 - 718939 - 10461549 - 1725
19-L719 - 7921047 - 11531726 - 1903
20-L793 - 8581154 - 12491904 - 2061
21-L859 - 9291250 - 13522062 - 2232
22-L930 - 10031353 - 14602233 - 2409
23-L1004 - 10911461 - 15882410 - 2620
24-L1092 - 11711589 - 17042621 - 2812
25-L1172 - 12731705 - 18532813 - 3057
26-L1274 - 13671854 - 19903058 - 3283
27-L1368 - 14651991 - 21323284 - 3517
28-L1466 - 15282133 - 22233518 - 3669
29-L1529 - 16282224 - 23693670 - 3909
30-L1629 - 17322370 - 25203910 - 4158
31-L1733 - 18402521 - 26774159 - 4417
32-L1841 - 19522678 - 28404418 - 4686
33-L1953 - 20682841 - 30094687 - 4965
34-L2069 - 21883010 - 31834966 - 5253
35-L2189 - 23033184 - 33515254 - 5529
36-L2304 - 24313352 - 35375530 - 5836
37-L2432 - 25633538 - 37295837 - 6153
38-L2564 - 26993730 - 39276154 - 6479
39-L2700 - 28093928 - 40876480 - 6743
40-L2810 - 29534088 - 42966744 - 7089

At least M (medium), ~15% error correction
#

Note that only medium error correction is optimal beyond version 4.

Version-Error CorrectionBinary/ByteAlphanumericNumeric
1-H1 - 71 - 101 - 17
1-Q8 - 1111 - 1618 - 27
1-M12 - 1417 - 2028 - 34
2-Q15 - 2021 - 2935 - 48
2-M21 - 2630 - 3849 - 63
3-Q27 - 3239 - 4764 - 77
3-M33 - 4248 - 6178 - 101
4-Q43 - 4662 - 67102 - 111
4-M47 - 6268 - 90112 - 149
5-M63 - 8491 - 122150 - 202
6-M85 - 106123 - 154203 - 255
7-M107 - 122155 - 178256 - 293
8-M123 - 152179 - 221294 - 365
9-M153 - 180222 - 262366 - 432
10-M181 - 213263 - 311433 - 513
11-M214 - 251312 - 366514 - 604
12-M252 - 287367 - 419605 - 691
13-M288 - 331420 - 483692 - 796
14-M332 - 362484 - 528797 - 871
15-M363 - 412529 - 600872 - 991
16-M413 - 450601 - 656992 - 1082
17-M451 - 504657 - 7341083 - 1212
18-M505 - 560735 - 8161213 - 1346
19-M561 - 624817 - 9091347 - 1500
20-M625 - 666910 - 9701501 - 1600
21-M667 - 711971 - 10351601 - 1708
22-M712 - 7791036 - 11341709 - 1872
23-M780 - 8571135 - 12481873 - 2059
24-M858 - 9111249 - 13262060 - 2188
25-M912 - 9971327 - 14512189 - 2395
26-M998 - 10591452 - 15422396 - 2544
27-M1060 - 11251543 - 16372545 - 2701
28-M1126 - 11901638 - 17322702 - 2857
29-M1191 - 12641733 - 18392858 - 3035
30-M1265 - 13701840 - 19943036 - 3289
31-M1371 - 14521995 - 21133290 - 3486
32-M1453 - 15382114 - 22383487 - 3693
33-M1539 - 16282239 - 23693694 - 3909
34-M1629 - 17222370 - 25063910 - 4134
35-M1723 - 18092507 - 26324135 - 4343
36-M1810 - 19112633 - 27804344 - 4588
37-M1912 - 19892781 - 28944589 - 4775
38-M1990 - 20992895 - 30544776 - 5039
39-M2100 - 22133055 - 32205040 - 5313
40-M2214 - 23313221 - 33915314 - 5596

At least Q (quartile), ~25% error correction
#

Note that only quartile error correction is optimal beyond version 4.

Version-Error CorrectionBinary/ByteAlphanumericNumeric
1-H1 - 71 - 101 - 17
1-Q8 - 1111 - 1618 - 27
2-H12 - 1417 - 2028 - 34
2-Q15 - 2021 - 2935 - 48
3-H21 - 2430 - 3549 - 58
3-Q25 - 3236 - 4759 - 77
4-H33 - 3448 - 5078 - 82
4-Q35 - 4651 - 6783 - 111
5-Q47 - 6068 - 87112 - 144
6-Q61 - 7488 - 108145 - 178
7-Q75 - 86109 - 125179 - 207
8-Q87 - 108126 - 157208 - 259
9-Q109 - 130158 - 189260 - 312
10-Q131 - 151190 - 221313 - 364
11-Q152 - 177222 - 259365 - 427
12-Q178 - 203260 - 296428 - 489
13-Q204 - 241297 - 352490 - 580
14-Q242 - 258353 - 376581 - 621
15-Q259 - 292377 - 426622 - 703
16-Q293 - 322427 - 470704 - 775
17-Q323 - 364471 - 531776 - 876
18-Q365 - 394532 - 574877 - 948
19-Q395 - 442575 - 644949 - 1063
20-Q443 - 482645 - 7021064 - 1159
21-Q483 - 509703 - 7421160 - 1224
22-Q510 - 565743 - 8231225 - 1358
23-Q566 - 611824 - 8901359 - 1468
24-Q612 - 661891 - 9631469 - 1588
25-Q662 - 715964 - 10411589 - 1718
26-Q716 - 7511042 - 10941719 - 1804
27-Q752 - 8051095 - 11721805 - 1933
28-Q806 - 8681173 - 12631934 - 2085
29-Q869 - 9081264 - 13222086 - 2181
30-Q909 - 9821323 - 14292182 - 2358
31-Q983 - 10301430 - 14992359 - 2473
32-Q1031 - 11121500 - 16182474 - 2670
33-Q1113 - 11681619 - 17002671 - 2805
34-Q1169 - 12281701 - 17872806 - 2949
35-Q1229 - 12831788 - 18672950 - 3081
36-Q1284 - 13511868 - 19663082 - 3244
37-Q1352 - 14231967 - 20713245 - 3417
38-Q1424 - 14992072 - 21813418 - 3599
39-Q1500 - 15792182 - 22983600 - 3791
40-Q1580 - 16632299 - 24203792 - 3993

Always H (high), ~30% error correction
#

Version-Error CorrectionBinary/ByteAlphanumericNumeric
1-H1 - 71 - 101 - 17
2-H8 - 1411 - 2018 - 34
3-H15 - 2421 - 3535 - 58
4-H25 - 3436 - 5059 - 82
5-H35 - 4451 - 6483 - 106
6-H45 - 5865 - 84107 - 139
7-H59 - 6485 - 93140 - 154
8-H65 - 8494 - 122155 - 202
9-H85 - 98123 - 143203 - 235
10-H99 - 119144 - 174236 - 288
11-H120 - 137175 - 200289 - 331
12-H138 - 155201 - 227332 - 374
13-H156 - 177228 - 259375 - 427
14-H178 - 194260 - 283428 - 468
15-H195 - 220284 - 321469 - 530
16-H221 - 250322 - 365531 - 602
17-H251 - 280366 - 408603 - 674
18-H281 - 310409 - 452675 - 746
19-H311 - 338453 - 493747 - 813
20-H339 - 382494 - 557814 - 919
21-H383 - 403558 - 587920 - 969
22-H404 - 439588 - 640970 - 1056
23-H440 - 461641 - 6721057 - 1108
24-H462 - 511673 - 7441109 - 1228
25-H512 - 535745 - 7791229 - 1286
26-H536 - 593780 - 8641287 - 1425
27-H594 - 625865 - 9101426 - 1501
28-H626 - 658911 - 9581502 - 1581
29-H659 - 698959 - 10161582 - 1677
30-H699 - 7421017 - 10801678 - 1782
31-H743 - 7901081 - 11501783 - 1897
32-H791 - 8421151 - 12261898 - 2022
33-H843 - 8981227 - 13072023 - 2157
34-H899 - 9581308 - 13942158 - 2301
35-H959 - 9831395 - 14312302 - 2361
36-H984 - 10511432 - 15302362 - 2524
37-H1052 - 10931531 - 15912525 - 2625
38-H1094 - 11391592 - 16582626 - 2735
39-H1140 - 12191659 - 17742736 - 2927
40-H1220 - 12731775 - 18522928 - 3057

Related

Tips on Creating the Smallest Possible QR Codes
Qr-Codes Programming
Some brief tips and discussion on how to make tiny QR codes with a focus on web URLs.
Animated Cellular Automaton QR Codes
Qr-Codes Cellular-Automata Video
An experiment in using randomized cellular automata to generate QR codes that remain valid on every frame.
Table of Password Lengths for Various Character Sets and Entropies
Extra Cybersecurity Passwords
A reference for password length recommendations for various character sets and entropy levels.